

ESIgen: Supporting information generator

[image: _images/esigen.svg]
 [https://travis-ci.org/insilichem/esigen][image: _images/downloads.svg]
 [https://anaconda.org/InsiliChem/esigen][image: _images/758659adfddf24d89cc14d6d6c49a451e4ab9a02.svg]
 [https://pubs.acs.org/doi/10.1021/acs.jcim.7b00714]Automatically generate supporting information documents for your Chemistry publications online.

[image: _images/esigen.gif]

For users

	Quick usage

	Installation

	Templating in ESIgen

For developers

	Using ESIgen programmatically

Support

	Get help

	Citation

Quick usage

Online server

Note

This is only a demo server, so performance won’t be stellar… All files
will be deleted within 1h and we won’t collect any data from you. Refer
to the Installation docs if you want to setup your own (local)
server.

	Visit esi.insilichem.com [http://esi.insilichem.com] and upload your Computational Chemistry
outputs there. Any of the examples in cclib data [https://github.com/cclib/cclib/tree/master/data] should work.

	Choose one of the Builtin templates or create your own (read on templating Syntax).

	Profit! You can now inspect the report and use the interactive viewer
to rotate, move and make measurements in your molecule(s).

	If you want to download the results, you have several options in the
footer:

	Download all the processed data in a ZIP file which will include
all the files listed below.

	Download only the rendered images in the browser.

	Markdown [https://en.wikipedia.org/wiki/Markdown] report (plain-text)

	XYZ [https://en.wikipedia.org/wiki/XYZ_file_format] coordinates

	CML [https://en.wikipedia.org/wiki/Chemical_Markup_Language] coordinates (Chemical Markup Language, XML-like)

	Raw JSON [https://en.wikipedia.org/wiki/JSON] (Programmatic representation of all the parsed data in
your logfiles)

	Chemical JSON [http://wiki.openchemistry.org/Chemical_JSON] (Simplified summary of the JSON dump, with more
meaningful names)

	You can also export to online services that generate citable DOI
identifiers for your data.

	Figshare [https://figshare.com/]

	Github Gist [https://gist.github.com/] (must be converted to repository and then sync’ed with
Zenodo integration)

	Zenodo [https://zenodo.org/]

Command-line (batch processing)

	Install ESIgen in your computer (read Installation).

	Run esigen filename.log. That’s it! You can even provide several
files at once with esigen file1.log file2.log or
esigen my_files_*.log.

	If you want to one of the Builtin templates or use your own (read on templating Syntax),
specify it with esigen -t mytemplate.md filename.log. Ideal for
quick reports on your daily routine. The template checks.md has been
designed for this specific purpose.

The ESIgen suite also includes several other executables:

	esigenweb. Creates a local webserver like the one in esi.insilichem.com [http://esi.insilichem.com], but running only in your computer.

	esixyz. Extracts XYZ coordinates from a computational chemistry logfile. Can be used with optimization jobs to request a particular step. Use esixyz -h for more help.

Futhermore, since ESIgen uses cclib under the hood, all its executables are available as well. Namely, ccget and ccwrite. Again use -h for more help.

Installation

If you need to process a lot of files or are worried about your privacy,
we recommend to install ESIgen locally. It also makes for a good
day-to-day tool if you have to check a lot of output files routinely!

Recommended steps

Download the latest release [https://github.com/insilichem/esigen/releases] and execute the installer. The binaries
esigen and esigenweb will be available under
$INSTALL_PATH/bin. In Windows, a shortcut will also be available in
Start menu.

If the installer is not available for your platform, use one of the
methods below.

With conda

Conda is package manager for Python that greatly simplifies the
installation of Python libraries.

	Download Miniconda 3 [https://conda.io/miniconda.html] for your platform. 2a. Install esigen in
a Python 3.6 environment (default for Miniconda 3). 2b. Install
esigen in a Python 2.7 environment if you don’t have PyMol
already (Linux and MacOS, only).

	Run esigenweb to launch the web server, or esigen for the CLI
tool.

For Linux & Mac, this roughly translates to:

Install Conda
wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh && bash Miniconda*.sh

Install esigen
conda install -c insilichem esigen

Or, if you also need PyMol
conda create -n esigen -c omnia -c egilliesix -c insilichem python=2.7 esigen
conda activate esigen

Run!
esigen -h # CLI
esigenweb # WEB

For Windows, it’s almost the same. Just install Miniconda with the
*.exe [https://repo.continuum.io/miniconda/Miniconda3-latest-Windows-x86_64.exe], and use the Anaconda Prompt (in Start Menu) to install
Numpy. Then, use pip for esigen. The commands are:

conda install numpy esigen
esigen -h # CLI
esigenweb # WEB

With pip

If you don’t want to install Conda, or the package is not available in
your platform, you will need to provide the additional dependencies
yourself. Assuming you already have Python installed, run:

pip install numpy
pip install esigen
or, for latest dev version
pip install https://github.com/insilichem/esigen/archive/master.zip

Templating in ESIgen

Builtin templates

Some templates are included with
ESIgen [https://github.com/insilichem/esigen/tree/master/esigen/templates/reports]
for your convenience:

	default.md. Uses an interactive 3D viewer in the web interface
and static images on the command line. A table of magnitudes is
provided, together with the coordinates and, if available, first 10
frequencies.

	TD.md. Same as default, but listing the excitation energies of TD
calculations.

	simple.md. Dummy example to help illustrate easy templating.

	chemshell.md. Shows experimental support for some ChemShell QM/MM
jobs.

	checks.md. Day-to-day analysis tasks for Gaussian jobs.

However, you might want to modify them or create your own from scratch.
Keep reading for further details.

Syntax

ESIgen templates are written using
Markdown [https://daringfireball.net/projects/markdown/syntax]
(a subset of HTML designed to be highly readable) syntax on top of the
wonderful **Jinja2** [http://jinja.pocoo.org/] engine, which allows
easy keyword replacing. For example:

{{ name }}

- Stoichiometry: {{ stoichiometry }}
- Electronic Energy (eV): {{ electronic_energy }}

, which results in something like this:

heme_fe2singlet_fe3doublet

	Stoichiometry: C34H30FeN4O4(1-,2)

	Electronic Energy (eV): -1957.86428957

As you see, you just write normal Markdown (syntax is described
here [https://github.com/tchapi/markdown-cheatsheet]) and then
insert the desired variables between double curly braces, like this
{{ energy }}. Jinja2 also supports for loops, if
conditionals and so on, but you won’t probably need it. However, one of
the advanced features might be helpful:
filters [http://jinja.pocoo.org/docs/2.10/templates/#filters], which
allow you to post-process some values (ie, centering with respect to a
fixed width with {{ value|center(20) }}).

Data Fields

All fields provided by cclib [http://cclib.github.io/index.html]
parsers are available. Simply refer to the official documentation on
Parsed Data [http://cclib.github.io/data.html] and Parsed Data
Notes [http://cclib.github.io/data_notes.html] to check the full list
and the compatibility matrix across different programs.

Additionally, ESIgen provides some more fields and methods you can use
during the templating:

	Features

	{{ name }}: Extracted from the filename, without the
extension.

	{{ filename }}: Filename, with extension.

	{{ filepath }}: Full path to the file.

	{{ stoichiometry }}. Self-explanatory.

	{{ imaginary_freqs }}: Number of negative frequencies.

	{{ mean_of_electrons }}: Mean of alphaelectrons and
betaelectrons.

	{{ metadata['route'] }}: First of Gaussian route sections. For
other programs, check metadata.

	{{ nsteps }}: Number of optimization steps. Extracted from
scfenergies size.

	{{ solvent }}. Solvent chosen, if applicable. (Gaussian only).

	ModRedundant scans (Gaussian only, might change anytime; see
checks.md for an example):

	{{ modredvars }}: List of variables being scanned (R83,
A21, D125…).

	{{ modreddefs }}: Atomic definition of those variables (2
atoms for R, 3 for A, 4 for D)

	{{ modredvalues }}: (m, n) array for variable values
(distance in A, angle in degrees), where m is the number of
cycles and n the number of variables.

	{{ modredenergies }}: (j, k, l) array of -dE/dx values,
where j is the number of cycles, k the number of iteration at
each cycle and l the number of variables being scanned.

	Magnitudes (Gaussian only)

	{{ electronic_energy }}. Last of scfenergies, Eh.

	{{ thermalenergy }}: Sum of electronic and thermal energies,
Eh.

	{{ zeropointenergy }}: Sum of electronic and zero-point
energies, Eh.

	Structural info

	{{ viewer3d }}: Insert interactive 3D depiction of the
structure. Only available in web UI.

	{{ image }}: Static depiction of the structure. Requires PyMol
(not available on public demo!)

	{{ cartesians }}: Molecule structure exported in XYZ format.

	Functions

	{{ convertor(value, from_unit, to_unit) }} can be used to
change units in most cases. Check
here [https://github.com/cclib/cclib/blob/master/src/cclib/parser/utils.py#L62]
for supported constants. If not, you can always use normal math
inside the curly braces ({{ (10+value)**2 }}).

	Experimental support for QM/MM jobs in ChemShell (might change
anytime; see chemshell.md template for an example)

	{{ scfenergies }}: Lists “QM/MM energy” entries.

	{{ mmenergies }}: List of dicts which detail MM energy
decomposition for each cycle.

	{{ energycontributions }}: List of dicts which detail QM/MM
energy decomposition for each cycle.

	{{ optdone }}: True if optimization converged (only
available with Turbomole backend).

Note

Depending on the software used to create the output file, some fields
might not be available. When in doubt, you can check the JSON dump of
the files by appending /json to the report URL (a link is also
available in the bottom of the page). This will list all the attributes
available for each file. (JSON dumps are best viewed in Firefox 57+).

Missing Values

An additional flag missing is passed to the template to control what
to report when the requested field is missing in the file. By default,
in the WebUI, maximum length is restricted to 10 chars.

In the default.md template, missing is checked in every row to
control if the row should be written or not. If missing is set to
the empty string '' (default value) and the value is not present in
the file, the row won’t be written; if missing is set to any other
string (for example, N/A) and the value is not present, the row will
be written but the value will be reported as N/A.

For example, if stoichiometry is not available in the file:

Case A: missing = ''

TDNI_GGCMPW

__Requested operations__

`p td=(nstates=30) MPW1PW91 scrf=(solvent=water) geom=connectivity def2tzvp`

__Relevant magnitudes__

Datum	Value
Charge	-2
Multiplicity	1
Stoichiometry	C7H9N3NiO4S(2-)
Number of Basis Functions	570
Electronic Energy (eV)	-2644.5302088499993
Mean of alpha and beta Electrons	75

Case B: missing = 'N/A', default

TDNI_GGCMPW

__Requested operations__

`p td=(nstates=30) MPW1PW91 scrf=(solvent=water) geom=connectivity def2tzvp`

__Relevant magnitudes__

Datum	Value
Charge	-2
Multiplicity	1
Stoichiometry	C7H9N3NiO4S(2-)
Number of Basis Functions	570
Electronic Energy (Eh)	-2644.5302088499993
Sum of electronic and zero-point Energies (Eh)	N/A
Sum of electronic and thermal Energies (Eh)	N/A
Sum of electronic and thermal Enthalpies (Eh)	N/A
Sum of electronic and thermal Free Energies (Eh)	N/A
Number of Imaginary Frequencies	N/A
Mean of alpha and beta Electrons	75

Using ESIgen programmatically

ESIgen is only a wrapper around the excellent cclib project, which
handles the tedious job of parsing computational chemistry logfiles. It
then provides all the parsed fields to a Jinja2 templating engine
via the main class, esigen.core.ESIgenReport. This class also hooks
to several molecular viewers implemented in esigen.render (PyMol,
NGLView, ChemView). The API is straight-forward:

from esigen import ESIgenReport
reporter = ESIgenReport(logfile_path)
all_fields = reporter.data_as_dict()
subyacent_ccdata = reporter.data
Fill template with parsed data ()
print(reporter.report(template='default.md'))
If inside Jupyter Notebook, get an interactive preview
reporter.view_with_nglview()

Check the docstrings for ESIgenReport and ESIgenReport.report()
for more information on available options.

How to extend ESIgen

TLDR: Check the source for the esigen.io module.

Extending ESIgen to add support for more fields should not be necessary.
Instead, contributing to cclib is preferred and, that way, other
users will benefit from the new additions. That said, we do add some
fields in ESIgen for the sake of easy templating. This is controlled in
the esigen.io.ccDataExtended class, which is a subclass of the
original cclib.parser.data.ccData_optdone_bool class, responsible of
holding the data fields (as listed here [http://cclib.github.io/data.html]). Our subclass creates a few
property methods (functions that can be called as attributes, without
the () syntax) that serve as aliases to compute some properties on
the fly based on the existing (static) fields. If you want to add more,
subclass esigen.io.ccDataExtended, add the properties and overwrite
the _properties class attribute to reflect the new additions:

from esigen.io import ccDataExtended
class ccDataExtendedExtra(ccDataExtended):
 _properties = ccDataExtended._properties[:] + ['my_new_property']

 @property
 def my_new_property(self):
 return 'Custom value computed out of static fields'

This is needed because esigen.io.ccDataExtended defines a new method
as_dict, that acts as the original ccData.getattributes, but
also collecting the values from all the elements defined in
_properties.

Temporarily, we have also added some more static attributes and
subclassed the original GaussianParser (based on
cclib.parser.Gaussian) to fill them in by adding more rules in
esigen.io.GaussianParser.extract. Eventually, these new fields will
be available in cclib, but in the meantime you can use these.

All the code in this module (esigen.io) can serve as an example on
how to extend ESIgen to fill your own needs. You only have to change the
default parameters during the creation of your ESIgenReport objects:

from esigen import ESIgenReport
default
report = ESIgenReport(logfile_path)
custom parser, default datatype
report = ESIgenR

Get help

If you have any questions, please feel free to submit an issue [https://github.com/insilichem/esigen/issues] in our Github repository [https://github.com/insilichem/esigen].

Citation

ESIgen is scientific software, funded by public research grants: Spanish MINECO (project CTQ2017-87889-P), Generalitat de Catalunya (project 2014SGR989), J.R.G.P.: Generalitat de Catalunya (grant 2017FI_B2_00168), P.G.O.: Spanish MINECO (grant FPI BES-2015-074190). If you make use of ESIgen in scientific publications, please cite our article in JCIM [https://pubs.acs.org/doi/10.1021/acs.jcim.7b00714]. It will help measure the impact of our research and future funding!

@article{doi:10.1021/acs.jcim.7b00714,
 author = {Rodríguez-Guerra Pedregal, Jaime and Gómez-Orellana, Pablo and Maréchal, Jean-Didier Pierre},
 title = {ESIgen: Electronic Supporting Information Generator for Computational Chemistry Publications},
 journal = {Journal of Chemical Information and Modeling},
 year = {2018},
 doi = {10.1021/acs.jcim.7b00714},
 note ={PMID: 29506387},
 URL = {
 https://doi.org/10.1021/acs.jcim.7b00714
 },
 eprint = {
 https://doi.org/10.1021/acs.jcim.7b00714
 }
}

Index

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_images/esigen.gif
ESIGEN

SUPPORTING INFORMATION GENERATOR

UR COMP CHEM® OUTPUT FILES HERE

_static/minus.png

nav.xhtml

 Table of Contents

 		
 ESIgen: Supporting information generator

 		
 Quick usage

 		
 Online server

 		
 Command-line (batch processing)

 		
 Installation

 		
 Recommended steps

 		
 With conda

 		
 With pip

 		
 Templating in ESIgen

 		
 Builtin templates

 		
 Syntax

 		
 heme_fe2singlet_fe3doublet

 		
 Data Fields

 		
 Missing Values

 		
 Using ESIgen programmatically

 		
 How to extend ESIgen

 		
 Get help

 		
 Citation

_static/up-pressed.png

_static/up.png

_static/plus.png

